《应用数学基础上》课件第七章空间图形.ppt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用数学基础上 应用数学基础上课件第七章 空间图形 应用 数学 基础上 课件 第七 空间 图形
- 资源描述:
-
1、第 七 章 空 间 图 形(一)本 章 内 容 小 结(二)常见问题分类及解法(三)思 考 题(四)课 堂 练 习(一一)本章内容小结本章内容小结一、本章主要内容一、本章主要内容(1)平面的概念以及基本性质.(2)直线与直线,直线与平面,平面与平面的位置关系.二、本章重点、难点二、本章重点、难点 线面位置关系,正棱锥、正棱台、圆柱、圆锥、球的概念和性质是重点;空间图形的画法是难点.(3)棱柱、棱锥、棱台的概念及性质.(4)圆柱、圆锥、圆台、球的概念与性质.三、对学习的建议三、对学习的建议 (1)本章内容由两部分组成,第一部分是空间直线和平面,第二部分是多面体和旋转体.第一部分是本章基础、平面几
2、何中定义、定理、公理等,在立体几何中的同一平面内仍成立.(2)第一部分的主要内容是有关空间的直线与直线,直线与平面以及平面与平面的位置关系和有关图形的画法,着重研究的是它们之间的平行与垂直关系.本部分的四个公理是基础,此外,平面几何里的定义、定理等,对于空间的任何平面内的平面图形仍然适用,但对于非平面图形,则需要经过证明才能应用.在解决立体几何的问题时,常把它转化为平面几何的问题来解决.空间两条直线的位置关系有“平行”、“相交”、“异面”三种;空间一条直线和一个平面的位置关系有“直线在平面内”、“平行”、“相交”三种;两个平面的位置关系有“平行”、“相交”两种.关于空间的直线与直线,直线与平面
3、,平面与平面的平行与垂直关系的性质定理与判定定理是本部分的中心问题.应用这些定理时,要弄清定理的题设和结论,判定定理的题设是结论成立的充分条件,性质定理的结论是题设成立的必要条件.当知识融会贯通之后,判定上述图形的平行或垂直关系的途径就更为广泛.例如,可以用“垂直于同一平面的两直线必平行”去判定两条直线平行;用“如果两平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面”去判定一条直线与一个平面垂直.两条异面直线所成的角,直线和平面所成的角以及二面角都是通过平面几何中的角来定义的,因而,它们都可以看做是平面几何中角的概念在空间的拓广.两条异面直线的距离,平行的直线与平面间距离以及两个平
4、行平面间的距离,都分别是它们的两点间距离中最小的.(3)第二部分的主要内容是多面体和旋转体中常见的柱、锥、台、球的概念、性质、直观图的画法以及面积、体积的计算,重点研究了应用比较广泛的直棱柱、正棱锥、正棱台、圆柱、圆锥、圆台、球和球缺.这些几何体的性质都是在第一部分线面关系的基础上由定义推出来的.这些性质包括:棱,面的性质;平行于底面的截面的性质;经过侧棱 (或高线、轴线)的截面的性质.通过这样的研究,我们对这些几何体就有了一个比较全面的认识.几种多面体和旋转体的表面积,除球面和球冠外,都是通过它们的展开图求得的,这些公式不但互相区别,而且互相联系.直棱柱、正棱锥、正棱台、圆柱、圆锥、圆台的侧
5、面公式可以统一写成:0SC l0式中,是中截面周长;分别是侧棱、斜高或母线长.Cl四、本章关键词四、本章关键词多面体旋转体球面、球冠、球带的面积,可以统一写成:2SRh式中,是球的半径;是高(或直径).Rh 几种多面体和旋转体的体积公式是分别把柱体、锥体、台体当做不同的几何体给出的,如果把柱体、锥体当做台体的特殊形式,那么它们,甚至包括球体的体积公式,都可以统一写成:01(4)6VH SSS0式中,是上、下底面积;是中截面面积;是高.SSSH(二二)常见问题分类及解法常见问题分类及解法一、直线与直线位置关系一、直线与直线位置关系问题 1 求证两直线平行.思路:两直线平行于同一直线;两直线垂直于
6、同一平面.问题 2 求两异面直线夹角(含垂直).思路:平移至同一平面;三垂线定理.问题 3 求异面直线距离.思路:找公垂线.解解图 7-1 例 1 图形EDCBA60 如图 7-1 所示,正方形 所在平面与正方形 所在平面成 的二面角,求异面直线 与 所成的余弦角.ABCDABEFADBF例例1 1由题设 及 都是正方形.ABCDABEFF所以,.CBABEBAB60所以,CBE连接,CE60则由,知 为正三角形.BCBECBEBEC1设正方形边长为.1则,ECBC连接,CF因为,BCAD 所以 就是异面直线 与 所成角.CBFADBF因为 平面,ABCBEFEAB所以 平面.EFCBE所以,
7、FECE22122 所以在 中,.CBFBCBFCFCEEF2cos4由余弦定理知.CBF*如图 7-2 所示,已知正四面体 的棱长为,、分别为、的中点,(1)求证:是 和 的公垂线;(2)求:和 间距离.ABCDaEFABCDEFABCDABCD例例2 2图 7-2 例 2 图形EDCBAF解解(1)连接、.AFBF因为 是正四面体,ABCD所以 与 都是正三角形.ADCBDC因为 为 中点,FDC所以.AFBF又因为 为 中点,EAB所以.EFAB同理.EFDC又因为,EABFDC所以 为 与 的公垂线.EFABCD3t22(2)在 中,aRBFEBFaBE22所以.EFa22即 与 间的
8、距离为.ABCDa111111 如图 7-3 所示,正方体 中,为异面直线 与 的公垂线.求证:.ABCDABC DEFACADEFBD例例3 3图 7-3 例 3 图形EDCBAF1 D1 C1 B1 A解解111连接、.BDBCABBD1111因为 为正方体,ABCDABC D1所以 底面,且 为正方形.DDABCDABCD1所以,为 在平面 上的射影.BDACBDBDABCD1所以.BDAC11 同理.BDAB11所以 平面.BDABC111又因为,为 与 的公垂线.ADBCEFADAC1所以,EFACEFBC1所以 平面,EFABC1所以.EFBD二、平面与平面位置关系二、平面与平面位
展开阅读全文
