书签 分享 收藏 举报 版权申诉 / 32

类型2021达摩院十大科技趋势.pdf

  • 上传人:添***
  • 文档编号:455890
  • 上传时间:2022-11-25
  • 格式:PDF
  • 页数:32
  • 大小:4.63MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 达摩 院十大 科技 趋势
    资源描述:

    1、!#$%&()*+Top Ten Tech Trends of DAMO Academy,-,.WXY!Z;趋势一:以氮化镓、碳化硅为代表的第三代半导体迎来应用大爆发趋势二:后“量子霸权”时代,量子纠错和实用优势成核心命题趋势三:碳基技术突破加速柔性电子发展趋势四:AI提升药物及疫苗研发效率趋势五:脑机接口帮助人类超越生物学极限趋势六:数据处理实现“自治与自我进化”趋势七:云原生重塑IT技术体系WX_!abcWXd!efgh趋势八:农业迈入数据智能时代趋势九:工业互联网从单点智能走向全局智能趋势十:智慧运营中心成为未来城市标配【卷首语】【序】-.-,-i-j.k.l,-,m,n,om,以氮化镓

    2、(GaN)和碳化硅(SiC)为代表的第三代半导体,具备耐高温、耐高压、高频率、大功率、抗辐射等优异特性,但受工艺、成本等因素限制,多年来仅限于小范围应用。近年来,随着材料生长、器件制备等技术的不断突破,第三代半导体的性价比优势逐渐显现并正在打开应用市场:SiC元件已用于汽车逆变器,GaN快速充电器也大量上市。未来5年,基于第三代半导体材料的电子器件将广泛应用于5G基站、新能源汽车、特高压、数据中心等场景。*+Ypqrstuvswxyz!|dy?半导体产业发展到今天,主要建立在三代材料的基础上:兴起于20世纪50年代的基于硅(Si)、锗(Ge)的第一代半导体;兴起于20世纪80年代的以砷化镓(G

    3、aAs)、磷化铟(InP)为代表的第二代半导体;以及兴起于20世纪末的以氮化镓(GaN)、碳化硅(SiC)为代表的第三代半导体。目前,第一代半导体材料Si应用最为广泛,它构成了一切逻辑器件的基础,CPU、GPU所提供的算力都离不开Si的功劳。第二代半导体主要用于高频高速场景,例如手机中的射频电路。第三代半导体相比于前两代半导体具有更宽的禁带宽度,因此也称作宽禁带半导体。更宽的禁带宽度允许材料在更高的温度、更强的电压、更快的开关频率下运行,因此第三代半导体具备耐高温、耐高压、高频率、大功率、抗辐射等优异特性,可以用作功率器件和射频器件,广泛应用于5G基站、新能源汽车、特高压、消费电子、航空航天、

    4、数据中心等领域。此外,较宽的禁带宽度使第三代半导体可用作制备短波长光电器件,例如可用于医疗消毒的紫外光源。*+?由于制造设备、制备工艺特别是材料成本上的劣势,多年来第三代半导体材料只是在小范围内应用。直至近几年这一局面才得以打破:一方面,在5G、新能源汽车等新兴市场中,Si基半导体的性能已无法完全满足需求,第三代半导体的性能优势被放大;另一方面,制备技术特别是大尺寸材料生长技术不断突破,SiC和GaN两种材料均从4英寸换代到6英寸并已研发出8英寸样品,加之器件制备技术逐步提升,使得第三代半导体器件性能日益稳定且成本不断下降,性价比优势逐渐显现。目前,第三代半导体已经出现在应用市场:一些新能源汽

    5、车在逆变器中应用SiC功率器件提升电能转换效率,进而提升续航里程;不在少数的电子消费厂商推出了GaN快速充电器,价格不贵,体积很小,一个快充头可以支撑手机、电脑等多设备快速充电。未来5年,除现有的电动汽车和消费电子外,预计工业充电、5G高频器件以及可再生能源和储能领域的电源应用都将从第三代半导体的发展中受益,尤其是在高频高压应用中将竞争性取代原有的Si器件。?2020年为后”量子霸权”元年,世界对量子计算的投入持续上涨,技术和生态蓬勃发展,多个平台异彩缤纷。这一潮流将在2021年继续推高社会的关注和期待,量子计算的研究需要证明自身的实用价值;业界需要聚焦“后霸权”时代的使命:协同创新,解决众多

    6、的科学和工程难题,为早日到达量子纠错和实用优势两座里程碑铺路奠基。*+_py!P+?*+2020年为后“量子霸权”元年,世界对量子计算的投入持续上涨,技术和生态蓬勃发展。超导领军团队宣布了通往1百万比特的规划;其他平台也异彩纷呈。离子阱则通过系统集成和容错部件上有力演示,证明了和超导同台技艺的潜力。声子 超导混合比特也跻身业界采用的平台。如上潮流将在2021年继续涌动,多管齐下,奔向“后霸权”的两个里程碑:量子纠错和实用优势。演示纠错的系统必须同时达到“多比特”、“高精度”和“高连接度”:至少几千个高质量、强关联的比特。量子比特数一直为大众关注重点;但只以比特数来衡量量子计算芯片的质量,好比“

    7、论画以形似”一样天真。“高精度”要求两比特的基本操作接近完美,“高连接度”要求比特以网格或更复杂的结构相互作用。?除了增量式进步外,2021年有望见证在这些维度上突破性的创新。比如基于新型设计的超高精度超导比特和扬弃目前线性结构的可扩展的二维离子阱。超导的另一场扬弃也可能在2021年播下种子:低温电子学的成熟将使得庞大和昂贵的室温电子学开始走向末路。实用优势的探索将继续以模拟物理为主流,借助模拟对错误的宽容。冷原子和量子煺火系统等模拟量子计算平台有望连同数字平台一起,继续产生鼓舞人心的进步。2021量子计算开源项目将以广泛和深入的贡献,大大降低学习和研究的成本,加速创新,并消减非科学因素撕裂量

    8、子社区的风险。量子计算还属于科学和工程并重的研究阶段,各个地区的科学家需要继续开放性研究,相濡以沫,携手合作。这是我们的信念,也是我们对2021年量子世界协同和平的祈愿。?*+dpv)!?柔性电子是指经扭曲、折叠、拉伸等形状变化后仍保持原有性能的电子设备,可用作可穿戴设备、电子皮肤、柔性显示屏等。柔性电子发展的主要瓶颈在于材料 目前的柔性材料,或者“柔性”不足容易失效,或者电性能远不如“硬质”硅基电子。近年来,碳基材料的技术突破为柔性电子提供了更好的材料选择:碳纳米管这一碳基柔性材料的质量已可满足大规模集成电路的制备要求,且在此材料上制备的电路性能超过同尺寸下的硅基电路;而另一碳基柔性材料石墨

    9、烯的大面积制备也已实现。*+?尽管折叠屏手机已经不是多么新鲜的事物,但我们世界的电子设备目前仍以“硬材质”为主导,柔性电子技术才刚刚起步。柔性电子通过将电子器件制作在柔性基底上,使电子器件在经受弯曲、折叠、扭曲、压缩、拉伸、甚至变成任意形状后,仍可保持原有性能。柔性电子是一场全新的电子技术革命,将在发光显示、能源装置、电子标签、电子皮肤等方面改变人类的生活方式。柔性电子发展的主要制约因素是材料。目前多数的柔性电子应用场景,是对硅进行柔性化处理 硅在变得非常薄且尺寸非常小之后,会具备一定的柔性。但随着硅基半导体器件尺寸逼近物理极限,这一方法已日趋贴近天花板。其他的柔性材料还包括有机材料,以及将有

    10、机材料和无机材料相结合。然而,利用这些材料制备的柔性电子,距离硅基器件存在显著的性能差距。?碳基材料为柔性电子提供了更好的选择。碳基材料包括零维的富勒烯、一维的碳纳米管、二维的石墨烯、三维的石墨及金刚石等,这其中,碳纳米管和石墨烯凭借优异的电性能、透光性特别是延展性,被公认为是柔性电子的“天选”材料。但一直以来,主要受限于材料制备技术,难以获得大面积、高质量的碳基材料成为限制其应用的最大障碍。近年来,碳基材料制备取得了突破性进展。2020年,研究人员在8英寸基底上成功制备了高密度高纯半导体阵列碳纳米管材料 ,材料纯度可达99.9999%,突破了碳纳米管集成电路关键的材料瓶颈,并同步开发了全自动

    11、的提纯和组装设备,具备了量产的技术积累。基于此种材料,研究人员还批量制备了场效应晶体管和环形振荡器电路,性能超越类似尺寸的硅基器件和电路。与此同时,石墨烯的大面积制备已经实现,特别是利用化学气相沉积法制备的石墨烯材料,已经证明具备优异的电学性能。这些都意味着碳基集成电路已经初步具备工业化基础,“碳时代”即将到来。随着材料技术的突破和发展,碳基柔性电子有望在医疗健康等领域率先实现规模应用。例如,“电子皮肤”可将外界作用于其上的力或热转换为电信号进行处理,让残疾人的义肢兼具美观和功能性;可植入的柔性电子设备为复杂疾病的治疗,如帕金森、癫痫、抑郁症等提供了新的治疗手段。?AI已广泛应用于医疗影像、病

    12、历管理等辅助诊断场景,但AI在疫苗研发及药物临床研究的应用依旧处于探索阶段。随着新型AI算法的迭代及算力的突破,AI将有效解决疫苗、药物研发周期长、成本高等难题,例如提升化合物筛选、建立疾病模型、发现新靶点、先导化合物发现及先导药物优化等环节的效率。AI与疫苗、药物临床研究的结合可以减少重复劳动与时间消耗,提升研发效率,极大的推动医疗服务和药物的普惠化。*+p!GR?*+由于新冠疫情的全球蔓延和深远影响,医疗行业从未像今天这样高度重视疫苗和药物的研发效率。以AI为代表的新技术被广泛关注,AI在医疗CT读片、影像分析、使用自然语言处理(NLP)录入病例等易于建立标准的领域,有着绝佳的工作效率与准

    13、确率,已经逐步应用在医疗诊断辅助领域。未来AI将从医疗影像、语言类等辅助诊断应用走向疫苗设计及药物临床研究,在疫苗化合物筛选、建立疾病模型、发现新靶点、先导化合物发现、先导药物优化及老药新用等环节上广泛参与。今年12月1日美国科学家首次用AI精准预测了蛋白质折叠形状,这将帮助研究人员进一步发现疾病的发病原理并开发新药。Nature数据显示:一款新药的平均研发成本大约是26亿美元,耗时约10年,成功率不到10%。而一款新药从研发到最后上市,需要经过药物发现、临床前研究、临床研究以及审批与上市4个阶段。其中,药物发现是非常重要的环节,它决定了一次研发的具体目标。这个环节又分为疾病选择、靶点发现和化

    14、合物合成几个步骤。其中仅化合物合成一步,一种药品就需要对500010000种化合物进行筛选,最后仅有5种左右进入最后的研究阶段。由于工程量巨大,所以药品研发的临床前研究阶段一般需要耗时3至6年。?AI与药物筛选结合是未来明确的方向,通过筛选流程和实验过程模型化,利用虚拟药物筛选、模拟计算筛选出药物的高概率结构,可以大幅减少化合物筛选的时间消耗。而且AI的帮助不仅是新药研发,通过匹配、发掘疾病与现有药物之间的数据关联性,老药新用也能快速在其他适应症上给予有效性证明。在疫苗设计和研发领域,AI也将成为有力帮手。例如在研发的疫苗中添加化合物可以提升其功效,更好地刺激人体免疫系统形成更多抗体。这个过程

    15、可以利用AI自动输入一系列已知的可激活人体免疫系统的有效化合物模型,与电脑合成程序产生的数亿种不同的化学化合物对比筛选,最终快速找到可能成为人类免疫药物的优质候选化合物。人类未来将越来越多的借助AI等科技手段来提升疫苗设计、药物研发的效率和精度,所有依赖于计算、依赖数据经验和可模型化的环节,都值得通过AI智能化的方式去尝试解决。同时,疫苗、药物研究的规模推广离不开人工智能和云端算力调用,两者的结合将带来巨大的经济价值和社会效益。?脑机接口是新一代人机交互和人机混合智能的关键核心技术。脑机接口对神经工程的发展起到了重要支撑与推动作用,帮助人类从更高维度空间进一步解析人类大脑的工作原理。脑机接口这

    16、一新技术领域探索性的将大脑与外部设备进行通信,并借由脑力意念控制机器。例如在控制机械臂等方面帮助提升应用精度,将为神智清醒,思维健全,但口不能言、手不能动的患者提供精准康复服务。*+p!J?脑机接口技术并不是一个新概念,这项技术经过几十年的研究发展(接口分植入式和非植入式),已经逐渐从学术界渗透到创业圈。虽然离实用化还有很长的路要走,但毫无疑问,人类朝着大脑与机器融合的伟大目标,向前踏出了一大步。植入式脑机接口相比非植入式头皮贴片方式精准度更高,可以编码更复杂的命令,但非植入式更安全,接受程度也更好。目前各个脑区里研究比较充分的有运动皮层、感觉皮层和视觉皮层;其中运动皮层脑机结合已经可以做到用意念控制机械手完成简单的三维运动、手腕方向和手指握力,例如机械手移动和抓握,但太精细的动作做不到,这也是未来需要攻克的方向。脑机接口技术是一个交叉学科,它的背后包括材料学、电子工程学、生物医学、神经信息学、计算机科学和认知科学等等,各项单一学科的进展都值得期待,比如更精确的电极、更友好的生物材料、更明晰的神经科学认知、更强大的AI机器学习算法等等。人类已经进化了数百万年,机器只存在了大约200 年

    展开阅读全文
    提示  兔兜文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021达摩院十大科技趋势.pdf
    链接地址:https://www.tudouwenku.com/doc/455890.html

    若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理

    copyright@2008-2022 兔兜文库 网站版权所有

    鲁公网安备37072502000182号  ICP备案号:鲁ICP备2021021588号-1  百度保障


    兔兜文库
    收起
    展开